Solution 4.3:4d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | With the formula for double angles and the Pythagorean identity  | + | With the formula for double angles and the Pythagorean identity <math>\cos^2\!v + \sin^2\!v = 1</math>, we can express <math>\cos 2v</math> in terms of <math>\cos v</math>,  | 
| - | <math>\cos ^  | + | |
| - | <math>\  | + | |
| - | in terms of   | + | |
| - | <math>\  | + | |
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | <math>\begin{align}  | + | \cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt]  | 
| - | + | &= \cos^2\!v - (1-\cos^2\!v)\\[5pt]   | |
| - | & =2\cos ^  | + | &= 2\cos^2\!v-1\\[5pt]  | 
| - | \end{align}</math>  | + | &= 2b^2-1\,\textrm{.}   | 
| + | \end{align}</math>}}  | ||
Current revision
With the formula for double angles and the Pythagorean identity \displaystyle \cos^2\!v + \sin^2\!v = 1, we can express \displaystyle \cos 2v in terms of \displaystyle \cos v,
| \displaystyle \begin{align}
 \cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt] &= \cos^2\!v - (1-\cos^2\!v)\\[5pt] &= 2\cos^2\!v-1\\[5pt] &= 2b^2-1\,\textrm{.} \end{align}  | 
