Solution 4.3:4c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
The formula for double angles gives  | The formula for double angles gives  | ||
| + | {{Displayed math||<math>\sin 2v=2\sin v\cos v</math>}}  | ||
| - | <math>\sin   | + | and from exercise b, we have <math>\sin v = \sqrt{1-b^2}\,</math>. Thus,  | 
| - | + | {{Displayed math||<math>\sin 2v = 2b\sqrt{1-b^2}\,\textrm{.}</math>}}  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\sin 2v=2b\sqrt{1-b^  | + | |
Current revision
The formula for double angles gives
| \displaystyle \sin 2v=2\sin v\cos v | 
and from exercise b, we have \displaystyle \sin v = \sqrt{1-b^2}\,. Thus,
| \displaystyle \sin 2v = 2b\sqrt{1-b^2}\,\textrm{.} | 
