Solution 4.3:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
In this case, it is perhaps simplest to use the addition formula for sine,  | In this case, it is perhaps simplest to use the addition formula for sine,  | ||
| + | {{Displayed math||<math>\sin\Bigl(\frac{\pi}{3}+v\Bigr) = \sin\frac{\pi }{3}\cdot \cos v + \cos\frac{\pi}{3}\cdot\sin v\,\textrm{.}</math>}}  | ||
| - | <math>\sin   | + | Since <math>\sin (\pi/3) = \sqrt{3}/\!2</math>, <math>\cos (\pi/3) = 1/2</math>, <math>\sin v = a</math>, and <math>\cos v=\sqrt{1-a^2}</math> this can be written as   | 
| - | + | {{Displayed math||<math>\sin\Bigl(\frac{\pi}{3}+v\Bigr) = \frac{\sqrt{3}}{2}\sqrt{1-a^2} + \frac{1}{2}a\,\textrm{.}</math>}}  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\sin \  | + | |
Current revision
In this case, it is perhaps simplest to use the addition formula for sine,
| \displaystyle \sin\Bigl(\frac{\pi}{3}+v\Bigr) = \sin\frac{\pi }{3}\cdot \cos v + \cos\frac{\pi}{3}\cdot\sin v\,\textrm{.} | 
Since \displaystyle \sin (\pi/3) = \sqrt{3}/\!2, \displaystyle \cos (\pi/3) = 1/2, \displaystyle \sin v = a, and \displaystyle \cos v=\sqrt{1-a^2} this can be written as
| \displaystyle \sin\Bigl(\frac{\pi}{3}+v\Bigr) = \frac{\sqrt{3}}{2}\sqrt{1-a^2} + \frac{1}{2}a\,\textrm{.} | 
