Solution 4.2:5c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | If we express the angle   | + | If we express the angle 330° in radians, we obtain  | 
| - | + | ||
| - | in radians, we obtain  | + | |
| + | {{Displayed math||<math>330^{\circ} = 330^{\circ}\cdot \frac{\pi}{180^{\circ}}\ \text{radians} = \frac{11\pi}{6}\ \text{radians}</math>}}  | ||
| - | + | and from exercise 3.3:1g, we know that  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | {{Displayed math||<math>\cos 330^{\circ} = \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}\,\textrm{.}</math>}}  | |
| - | + | ||
| - | + | ||
| - | <math>\cos 330^{\circ }=\cos \frac{11\pi }{6}=\frac{\sqrt{3}}{2}</math>  | + | |
Current revision
If we express the angle 330° in radians, we obtain
| \displaystyle 330^{\circ} = 330^{\circ}\cdot \frac{\pi}{180^{\circ}}\ \text{radians} = \frac{11\pi}{6}\ \text{radians} | 
and from exercise 3.3:1g, we know that
| \displaystyle \cos 330^{\circ} = \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}\,\textrm{.} | 
