Solution 4.2:4d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | If we use the unit circle and mark on the angle  | + | If we use the unit circle and mark on the angle <math>\pi</math>, we see immediately that <math>\cos \pi = -1</math> and <math>\sin \pi = 0\,</math>.  | 
| - | <math>\pi </math>, we see immediately that   | + | |
| - | <math>\  | + | |
| - | and   | + | |
| - | <math>\  | + | |
[[Image:4_2_4_d.gif|center]]  | [[Image:4_2_4_d.gif|center]]  | ||
| Line 9: | Line 5: | ||
Thus,  | Thus,  | ||
| - | + | {{Displayed math||<math>\tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0\,\textrm{.}</math>}}  | |
| - | <math>\tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0</math>  | + | |
Current revision
If we use the unit circle and mark on the angle \displaystyle \pi, we see immediately that \displaystyle \cos \pi = -1 and \displaystyle \sin \pi = 0\,.
Thus,
| \displaystyle \tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0\,\textrm{.} | 

