Solution 4.2:3b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:4_2_3b.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | + | The angle <math>2\pi</math> corresponds to a whole revolution and therefore we see that if we draw in a line with angle <math>2\pi</math> relative to the positive ''x''-axis, we will get the positive ''x''-axis.  | |
| - | <  | + | |
| - | + | [[Image:4_2_3_b.gif|center]]  | |
| + | |||
| + | Because <math>\cos 2\pi</math> is the ''x''-coordinate for the point of intersection between the line with angle <math>2\pi</math> and the unit circle, we can see directly that <math>\cos 2\pi = 1\,</math>.  | ||
Current revision
The angle \displaystyle 2\pi corresponds to a whole revolution and therefore we see that if we draw in a line with angle \displaystyle 2\pi relative to the positive x-axis, we will get the positive x-axis.
Because \displaystyle \cos 2\pi is the x-coordinate for the point of intersection between the line with angle \displaystyle 2\pi and the unit circle, we can see directly that \displaystyle \cos 2\pi = 1\,.

