Solution 4.2:1a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | [[Image:4_2_1_a.gif|center]]  | ||
| - | |||
| - | |||
| - | |||
The definition of the tangent states that  | The definition of the tangent states that  | ||
| - | + | {| width="100%"  | |
| - | + | | width="50%" align="center"|<math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math>  | |
| - | <math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math>  | + | | width="50%" align="center"|[[Image:4_2_1_a.gif]]  | 
| - | + | |}  | |
In our case, this means that  | In our case, this means that  | ||
| + | {{Displayed math||<math>\tan 27^{\circ} = \frac{x}{13}</math>}}  | ||
| - | + | which gives <math>x = 13\cdot \tan 27^{\circ}\,</math>.  | |
| - | + | ||
| - | + | ||
| - | which gives   | + | |
| - | <math>x=  | + | |
| - | NOTE: Using a calculator, we can work out what   | ||
| - | <math>x\text{ }</math>  | ||
| - | should be:  | ||
| + | Note: Using a calculator, we can work out what ''x'' should be,  | ||
| - | <math>x=  | + | {{Displayed math||<math>x = 13\cdot\tan 27^{\circ} \approx 6\textrm{.}62\,\textrm{.}</math>}}  | 
Current revision
The definition of the tangent states that
| \displaystyle \tan u=\frac{\text{opposite}}{\text{adjacent}} |  
 | 
In our case, this means that
| \displaystyle \tan 27^{\circ} = \frac{x}{13} | 
which gives \displaystyle x = 13\cdot \tan 27^{\circ}\,.
Note: Using a calculator, we can work out what x should be,
| \displaystyle x = 13\cdot\tan 27^{\circ} \approx 6\textrm{.}62\,\textrm{.} | 

