Solution 4.1:7d
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | + | We rewrite the equation in standard form by completing the square for the ''x''- and ''y''-terms, | |
- | + | ||
- | <center> [[ | + | {{Displayed math||<math>\begin{align} |
- | + | x^{2} - 2x &= (x-1)^2 - 1^2\,,\\[5pt] | |
+ | y^{2} + 2y &= (y+1)^2 - 1^2\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | Now, the equation is | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | (x-1)^2 - 1 + (y+1)^2 - 1 &= -2\\ | ||
+ | \Leftrightarrow\quad (x-1)^2 + (y+1)^2 &= 0\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | The only point which satisfies this equation is <math>(x,y) = (1,-1)</math> because, for all other values of ''x'' and ''y'', the left-hand side is strictly positive and therefore not zero. | ||
+ | |||
+ | |||
+ | <center> [[Image:4_1_7_d.gif]] </center> |
Current revision
We rewrite the equation in standard form by completing the square for the x- and y-terms,
\displaystyle \begin{align}
x^{2} - 2x &= (x-1)^2 - 1^2\,,\\[5pt] y^{2} + 2y &= (y+1)^2 - 1^2\,\textrm{.} \end{align} |
Now, the equation is
\displaystyle \begin{align}
(x-1)^2 - 1 + (y+1)^2 - 1 &= -2\\ \Leftrightarrow\quad (x-1)^2 + (y+1)^2 &= 0\,\textrm{.} \end{align} |
The only point which satisfies this equation is \displaystyle (x,y) = (1,-1) because, for all other values of x and y, the left-hand side is strictly positive and therefore not zero.
