Solution 4.1:4b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
If we use the distance formula  | If we use the distance formula  | ||
| + | {{Displayed math||<math>d=\sqrt{(x-a)^2+(y-b)^2}</math>}}  | ||
| - | <math>  | + | to determine the distance between the points <math>(x,y) = (-2,5)</math> and <math>(a,b) = (3,-1)</math>, we get  | 
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | + | d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt]   | |
| - | + | &= \sqrt{(-5)^2+6^2}\\[5pt]  | |
| - | + | &= \sqrt{25+36}\\[5pt]  | |
| - | + | &= \sqrt{61}\,\textrm{.}   | |
| - | + | \end{align}</math>}}  | |
| - | + | ||
| - | <math>\begin{align}  | + | |
| - | &   | + | |
| - | & =\sqrt{  | + | |
| - | \end{align}</math>  | + | |
Current revision
If we use the distance formula
| \displaystyle d=\sqrt{(x-a)^2+(y-b)^2} | 
to determine the distance between the points \displaystyle (x,y) = (-2,5) and \displaystyle (a,b) = (3,-1), we get
| \displaystyle \begin{align}
 d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt] &= \sqrt{(-5)^2+6^2}\\[5pt] &= \sqrt{25+36}\\[5pt] &= \sqrt{61}\,\textrm{.} \end{align}  | 
