Solution 4.1:4b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | If we use the distance formula  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>d=\sqrt{(x-a)^2+(y-b)^2}</math>}}  | 
| + | |||
| + | to determine the distance between the points <math>(x,y) = (-2,5)</math> and <math>(a,b) = (3,-1)</math>, we get  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt]   | ||
| + | &= \sqrt{(-5)^2+6^2}\\[5pt]  | ||
| + | &= \sqrt{25+36}\\[5pt]  | ||
| + | &= \sqrt{61}\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Current revision
If we use the distance formula
| \displaystyle d=\sqrt{(x-a)^2+(y-b)^2} | 
to determine the distance between the points \displaystyle (x,y) = (-2,5) and \displaystyle (a,b) = (3,-1), we get
| \displaystyle \begin{align}
 d &= \sqrt{(-2-3)^2+(5-(-1))^2}\\[5pt] &= \sqrt{(-5)^2+6^2}\\[5pt] &= \sqrt{25+36}\\[5pt] &= \sqrt{61}\,\textrm{.} \end{align}  | 
