Solution 3.4:2b
From Förberedande kurs i matematik 1
m  (Lösning 3.4:2b moved to Solution 3.4:2b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | If we write the equation as  | 
| - | <  | + | |
| - | {{  | + | |
| - | {{  | + | |
| - | <  | + | <math>\left( e^{x} \right)^{2}+e^{x}=4</math>  | 
| - | {{  | + | |
| + | |||
| + | we see that   | ||
| + | <math>x</math>  | ||
| + | appears only in the combination   | ||
| + | <math>e^{x}</math>  | ||
| + | and it is therefore appropriate to treat   | ||
| + | <math>e^{x}</math>  | ||
| + | as a new unknown in the equation and then, when we have obtained the value of  | ||
| + | <math>e^{x}</math>, we can calculate the corresponding  value of   | ||
| + | <math>x</math>  | ||
| + | by simply taking the logarithm.  | ||
| + | |||
| + | For clarity, we set  | ||
| + | <math>t=e^{x}</math>, so that the equation can be written as  | ||
| + | |||
| + | |||
| + | <math>t^{2}+t=4</math>  | ||
| + | |||
| + | |||
| + | and we solve this second-degree equation by completing the square,  | ||
| + | |||
| + | |||
| + | <math>t^{2}+t=\left( t+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}=\left( t+\frac{1}{2} \right)^{2}-\frac{1}{4}</math>  | ||
| + | |||
| + | |||
| + | which gives  | ||
| + | |||
| + | |||
| + | <math>\left( t+\frac{1}{2} \right)^{2}-\frac{1}{4}=4\quad \Leftrightarrow \quad t=-\frac{1}{2}\pm \frac{\sqrt{17}}{2}</math>  | ||
| + | |||
| + | |||
| + | These two roots give us two possible values for  | ||
| + | <math>e^{x}</math>,  | ||
| + | |||
| + | |||
| + | <math>e^{x}=-\frac{1}{2}-\frac{\sqrt{17}}{2}</math>  | ||
| + | 		or 		  | ||
| + | <math>e^{x}=-\frac{1}{2}+\frac{\sqrt{17}}{2}</math>  | ||
| + | |||
| + | |||
| + | In the first case, the right-hand side is negative and because "  | ||
| + | <math>e</math>  | ||
| + | raised to anything" can never be negative, there is no   | ||
| + | <math>x</math>  | ||
| + | that can satisfy this equality. The other case, on the other hand, has a positive right-hand side (because   | ||
| + | <math>\sqrt{17}>1</math>  | ||
| + | ) and we can take the logarithm of both sides to obtain  | ||
| + | |||
| + | |||
| + | <math>x=\ln \left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)</math>  | ||
| + | |||
| + | |||
| + | NOTE: It is a little tricky to check the answer to the original equation, so we can be satisfied with substituting   | ||
| + | <math>t=\frac{\sqrt{17}}{2}-\frac{1}{2}</math>  | ||
| + | into the equation   | ||
| + | <math>t^{\text{2}}+t=\text{4}</math>,  | ||
| + | |||
| + | LHS  | ||
| + | <math>=</math>  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & =\left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)^{2}+\left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)=\frac{17}{4}-2\centerdot \frac{1}{2}\centerdot \frac{\sqrt{17}}{2}+\frac{1}{4}+\frac{\sqrt{17}}{2}-\frac{1}{2} \\   | ||
| + | & =\frac{17}{4}+\frac{1}{4}-\frac{1}{2}=\frac{17+1-2}{4}=\frac{16}{4}=4= \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | <math>=</math>  | ||
| + | RHS.  | ||
Revision as of 11:44, 6 October 2008
If we write the equation as
\displaystyle \left( e^{x} \right)^{2}+e^{x}=4
we see that 
\displaystyle x
appears only in the combination 
\displaystyle e^{x}
and it is therefore appropriate to treat 
\displaystyle e^{x}
as a new unknown in the equation and then, when we have obtained the value of
\displaystyle e^{x}, we can calculate the corresponding  value of 
\displaystyle x
by simply taking the logarithm.
For clarity, we set \displaystyle t=e^{x}, so that the equation can be written as
\displaystyle t^{2}+t=4
and we solve this second-degree equation by completing the square,
\displaystyle t^{2}+t=\left( t+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}=\left( t+\frac{1}{2} \right)^{2}-\frac{1}{4}
which gives
\displaystyle \left( t+\frac{1}{2} \right)^{2}-\frac{1}{4}=4\quad \Leftrightarrow \quad t=-\frac{1}{2}\pm \frac{\sqrt{17}}{2}
These two roots give us two possible values for
\displaystyle e^{x},
\displaystyle e^{x}=-\frac{1}{2}-\frac{\sqrt{17}}{2}
		or 		
\displaystyle e^{x}=-\frac{1}{2}+\frac{\sqrt{17}}{2}
In the first case, the right-hand side is negative and because "
\displaystyle e
raised to anything" can never be negative, there is no 
\displaystyle x
that can satisfy this equality. The other case, on the other hand, has a positive right-hand side (because 
\displaystyle \sqrt{17}>1
) and we can take the logarithm of both sides to obtain
\displaystyle x=\ln \left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)
NOTE: It is a little tricky to check the answer to the original equation, so we can be satisfied with substituting 
\displaystyle t=\frac{\sqrt{17}}{2}-\frac{1}{2}
into the equation 
\displaystyle t^{\text{2}}+t=\text{4},
LHS \displaystyle =
 
\displaystyle \begin{align}
& =\left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)^{2}+\left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)=\frac{17}{4}-2\centerdot \frac{1}{2}\centerdot \frac{\sqrt{17}}{2}+\frac{1}{4}+\frac{\sqrt{17}}{2}-\frac{1}{2} \\ 
& =\frac{17}{4}+\frac{1}{4}-\frac{1}{2}=\frac{17+1-2}{4}=\frac{16}{4}=4= \\ 
\end{align}
\displaystyle =
RHS.
