Solution 4.1:1
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:4_1_1a.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The only thing we really need to remember is that one revolution corresponds to   | 
| - | <  | + | 360° or <math>2\pi</math> radians. Then we get:  | 
| - | {{  | + | |
| + | {|  | ||
| + | ||a)    | ||
| + | |width="100%"|<math>\frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | |width="100%"|<math>\frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,}</math>  | ||
| + | |-  | ||
| + | |height="10px"|   | ||
| + | |-  | ||
| + | ||b)    | ||
| + | |width="100%"|<math>\frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | ||<math>\frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,}</math>  | ||
| + | |-  | ||
| + | |height="10px"|   | ||
| + | |-  | ||
| + | ||c)    | ||
| + | |width="100%"|<math>-\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | |width="100%"|<math>-\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,}</math>  | ||
| + | |-  | ||
| + | |height="10px"|   | ||
| + | |-  | ||
| + | ||d)   	  | ||
| + | |width="100%"|<math>\frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | |width="100%"|<math>\frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.}</math>  | ||
| + | |}  | ||
Current revision
The only thing we really need to remember is that one revolution corresponds to 360° or \displaystyle 2\pi radians. Then we get:
| a) | \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} and | 
| \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,} | |
| b) | \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} and | 
| \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,} | |
| c) | \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} and | 
| \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,} | |
| d) | \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} and | 
| \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.} | 
