Solution 3.4:1c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | The equation has the same form as the equation in exercise   | + | The equation has the same form as the equation in exercise b and we can therefore use the same strategy.  | 
First, we take logs of both sides,  | First, we take logs of both sides,  | ||
| + | {{Displayed math||<math>\ln\bigl(3e^x\bigr) = \ln\bigl(7\cdot 2^x\bigr)\,\textrm{,}</math>}}  | ||
| - | <math>  | + | and use the log laws to make <math>x</math> more accessible,  | 
| + | {{Displayed math||<math>\ln 3 + x\cdot \ln e = \ln 7 + x\cdot \ln 2\,\textrm{.}</math>}}  | ||
| - | + | Then, collect together the <math>x</math> terms on the left-hand side,  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | Then, collect together the <math>x</math> terms on the left-hand side  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>x(\ln e-\ln 2) = \ln 7-\ln 3\,\textrm{.}</math>}}  | ||
The solution is now  | The solution is now  | ||
| - | + | {{Displayed math||<math>x = \frac{\ln 7-\ln 3}{\ln e-\ln 2} = \frac{\ln 7-\ln 3}{1-\ln 2}\,\textrm{.}</math>}}  | |
| - | <math>x=\frac{\ln 7-\ln 3}{\ln e-\ln 2}=\frac{\ln 7-\ln 3}{1-\ln 2}</math>  | + | |
Current revision
The equation has the same form as the equation in exercise b and we can therefore use the same strategy.
First, we take logs of both sides,
| \displaystyle \ln\bigl(3e^x\bigr) = \ln\bigl(7\cdot 2^x\bigr)\,\textrm{,} | 
and use the log laws to make \displaystyle x more accessible,
| \displaystyle \ln 3 + x\cdot \ln e = \ln 7 + x\cdot \ln 2\,\textrm{.} | 
Then, collect together the \displaystyle x terms on the left-hand side,
| \displaystyle x(\ln e-\ln 2) = \ln 7-\ln 3\,\textrm{.} | 
The solution is now
| \displaystyle x = \frac{\ln 7-\ln 3}{\ln e-\ln 2} = \frac{\ln 7-\ln 3}{1-\ln 2}\,\textrm{.} | 
