Solution 3.4:1b
From Förberedande kurs i matematik 1
m   | 
			|||
| Line 1: | Line 1: | ||
| - | In the equation, both sides are positive because the factors   | + | In the equation, both sides are positive because the factors <math>e^{x}</math> and <math>3^{-x}</math> are positive regardless of the value of <math>x</math> (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both sides,  | 
| - | <math>e^{x}</math>  | + | |
| - | and   | + | |
| - | <math>3^{-x}</math>  | + | |
| - | are positive regardless of the value of   | + | |
| - | <math>x</math>  | + | |
| - | (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both   | + | |
| + | {{Displayed math||<math>\ln\bigl(13e^{x}\bigr) = \ln\bigl(2\cdot 3^{-x}\bigr)\,\textrm{.}</math>}}  | ||
| - | + | Using the log laws, we can divide up the products into several logarithmic terms,  | |
| + | {{Displayed math||<math>\ln 13+\ln e^{x}  =\ln 2+\ln 3^{-x},</math>}}  | ||
| - | + | and using the law <math>\ln a^{b}=b\cdot \ln a</math>, we can get rid of <math>x</math> from the exponents  | |
| + | {{Displayed math||<math>\ln 13 + x\ln e = \ln 2 + (-x)\ln 3\,\textrm{.}</math>}}  | ||
| - | <math>  | + | Collect <math>x</math> on one side and the other terms on the other,  | 
| + | {{Displayed math||<math>x\ln e+x\ln 3=\ln 2-\ln 13\,\textrm{.}</math>}}  | ||
| - | + | Take out <math>x</math> on the left-hand side and use <math>\ln e=1</math>,  | |
| - | <math>  | + | |
| - | <math>  | + | |
| - | + | ||
| + | {{Displayed math||<math>x( 1+\ln 3)=\ln 2-\ln 13\,\textrm{.}</math>}}  | ||
| - | <math>  | + | Then, solve for <math>x</math>,  | 
| + | {{Displayed math||<math>x=\frac{\ln 2-\ln 13}{1+\ln 3}\,\textrm{.}</math>}}  | ||
| - | Collecting together   | ||
| - | <math>x</math>  | ||
| - | on one side and the other terms on the other,  | ||
| + | Note: Because <math>\ln 2 < \ln 13</math>, we can write the answer as  | ||
| - | <math>x\  | + | {{Displayed math||<math>x=-\frac{\ln 13-\ln 2}{1+\ln 3}</math>}}  | 
| - | + | to indicate that <math>x</math> is negative.  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>x</math>  | + | |
| - | is negative.  | + | |
Current revision
In the equation, both sides are positive because the factors \displaystyle e^{x} and \displaystyle 3^{-x} are positive regardless of the value of \displaystyle x (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both sides,
| \displaystyle \ln\bigl(13e^{x}\bigr) = \ln\bigl(2\cdot 3^{-x}\bigr)\,\textrm{.} | 
Using the log laws, we can divide up the products into several logarithmic terms,
| \displaystyle \ln 13+\ln e^{x} =\ln 2+\ln 3^{-x}, | 
and using the law \displaystyle \ln a^{b}=b\cdot \ln a, we can get rid of \displaystyle x from the exponents
| \displaystyle \ln 13 + x\ln e = \ln 2 + (-x)\ln 3\,\textrm{.} | 
Collect \displaystyle x on one side and the other terms on the other,
| \displaystyle x\ln e+x\ln 3=\ln 2-\ln 13\,\textrm{.} | 
Take out \displaystyle x on the left-hand side and use \displaystyle \ln e=1,
| \displaystyle x( 1+\ln 3)=\ln 2-\ln 13\,\textrm{.} | 
Then, solve for \displaystyle x,
| \displaystyle x=\frac{\ln 2-\ln 13}{1+\ln 3}\,\textrm{.} | 
Note: Because \displaystyle \ln 2 < \ln 13, we can write the answer as
| \displaystyle x=-\frac{\ln 13-\ln 2}{1+\ln 3} | 
to indicate that \displaystyle x is negative.
