Solution 3.3:5e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:5e moved to Solution 3.3:5e: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The argument of ln can be written as  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\frac{1}{e^{2}} = e^{-2}</math>}}  | 
| + | |||
| + | and with the logarithm law, <math>\ln a^{b} = b\ln a</math>, we obtain  | ||
| + | |||
| + | {{Displayed math||<math>\ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.}</math>}}  | ||
Current revision
The argument of ln can be written as
| \displaystyle \frac{1}{e^{2}} = e^{-2} | 
and with the logarithm law, \displaystyle \ln a^{b} = b\ln a, we obtain
| \displaystyle \ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.} | 
