Solution 3.3:4c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | All three arguments of the logarithm can be written as powers of   | + | All three arguments of the logarithm can be written as powers of 3,  | 
| - | + | ||
| - | <math>\begin{align}  | + | {{Displayed math||<math>\begin{align}  | 
| - | + | 27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt]  | |
| - | + | \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\   | |
| - | \end{align}</math>  | + | \end{align}</math>}}  | 
| + | and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg,  | ||
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | + | \lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9}  | |
| - | + | &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt]   | |
| - | + | &= \lg 3 + \frac{1}{2}\lg 3 + (-2)\cdot\lg 3\\[5pt]  | |
| - | + | &= \Bigl(1+\frac{1}{2}-2\Bigr)\lg 3\\[5pt]  | |
| - | + | &= -\frac{1}{2}\lg 3\,\textrm{.}   | |
| - | + | \end{align}</math>}}  | |
| - | + | ||
| - | <math>\begin{align}  | + | |
| - | + | ||
| - | & =\lg 3+\frac{1}{2}\lg 3+  | + | |
| - | & =\  | + | |
| - | \end{align}</math>  | + | |
| - | + | ||
This expression cannot be simplified any further.  | This expression cannot be simplified any further.  | ||
Current revision
All three arguments of the logarithm can be written as powers of 3,
| \displaystyle \begin{align}
 27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt] \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\ \end{align}  | 
and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg,
| \displaystyle \begin{align}
 \lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9} &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt] &= \lg 3 + \frac{1}{2}\lg 3 + (-2)\cdot\lg 3\\[5pt] &= \Bigl(1+\frac{1}{2}-2\Bigr)\lg 3\\[5pt] &= -\frac{1}{2}\lg 3\,\textrm{.} \end{align}  | 
This expression cannot be simplified any further.
