Solution 3.3:3g
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_3g.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as   | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.}</math>}}  | 
| + | |||
| + | Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law,   | ||
| + | <math>\lg (ab) = \lg a + \lg b\,</math>,  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \log _{3}12 - \log _{3}4  | ||
| + | &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt]   | ||
| + | &= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt]  | ||
| + | &= \log _{3}3\\[5pt]  | ||
| + | &= 1\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Current revision
Using the logarithm law, \displaystyle \lg a-\lg b = \lg\frac{a}{b}\,, the expression can be calculated as
| \displaystyle \log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.} | 
Another way is to write \displaystyle 12 = 3\cdot 4 and use the logarithm law, \displaystyle \lg (ab) = \lg a + \lg b\,,
| \displaystyle \begin{align}
 \log _{3}12 - \log _{3}4 &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] &= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt] &= \log _{3}3\\[5pt] &= 1\,\textrm{.} \end{align}  | 
