Solution 3.3:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | If we write   | + | If we write 4 and 16 as  | 
| - | + | ||
| - | and   | + | |
| - | + | ||
| - | as  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | 4 &= 2\cdot 2 = 2^2\,,\\[5pt]   | ||
| + | 16 &= 2\cdot 8 = 2\cdot 2\cdot 4 = 2\cdot 2\cdot 2\cdot 2 = 2^4\,,  | ||
| + | \end{align}</math>}}  | ||
we obtain  | we obtain  | ||
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | <math>\begin{align}  | + | \log_2 4 + \log_2\frac{1}{16}  | 
| - | + | &= \log_2 2^2 + \log_2\frac{1}{2^4}\\[5pt]   | |
| - | & =\  | + | &= \log_2 2^2 + \log_2 2^{-4}\\[5pt]  | 
| - | & =2\  | + | &= 2\cdot\log_2 2 + (-4)\cdot\log_2 2\\[5pt]   | 
| - | \end{align}</math>  | + | &= 2\cdot 1 + (-4)\cdot 1\\[5pt]  | 
| + | &= -2\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Current revision
If we write 4 and 16 as
| \displaystyle \begin{align}
 4 &= 2\cdot 2 = 2^2\,,\\[5pt] 16 &= 2\cdot 8 = 2\cdot 2\cdot 4 = 2\cdot 2\cdot 2\cdot 2 = 2^4\,, \end{align}  | 
we obtain
| \displaystyle \begin{align}
 \log_2 4 + \log_2\frac{1}{16} &= \log_2 2^2 + \log_2\frac{1}{2^4}\\[5pt] &= \log_2 2^2 + \log_2 2^{-4}\\[5pt] &= 2\cdot\log_2 2 + (-4)\cdot\log_2 2\\[5pt] &= 2\cdot 1 + (-4)\cdot 1\\[5pt] &= -2\,\textrm{.} \end{align}  | 
