Solution 3.3:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_3f.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | If we write 4 and 16 as  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| + | 4 &= 2\cdot 2 = 2^2\,,\\[5pt]   | ||
| + | 16 &= 2\cdot 8 = 2\cdot 2\cdot 4 = 2\cdot 2\cdot 2\cdot 2 = 2^4\,,  | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | we obtain  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \log_2 4 + \log_2\frac{1}{16}  | ||
| + | &= \log_2 2^2 + \log_2\frac{1}{2^4}\\[5pt]   | ||
| + | &= \log_2 2^2 + \log_2 2^{-4}\\[5pt]  | ||
| + | &= 2\cdot\log_2 2 + (-4)\cdot\log_2 2\\[5pt]   | ||
| + | &= 2\cdot 1 + (-4)\cdot 1\\[5pt]  | ||
| + | &= -2\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Current revision
If we write 4 and 16 as
| \displaystyle \begin{align}
 4 &= 2\cdot 2 = 2^2\,,\\[5pt] 16 &= 2\cdot 8 = 2\cdot 2\cdot 4 = 2\cdot 2\cdot 2\cdot 2 = 2^4\,, \end{align}  | 
we obtain
| \displaystyle \begin{align}
 \log_2 4 + \log_2\frac{1}{16} &= \log_2 2^2 + \log_2\frac{1}{2^4}\\[5pt] &= \log_2 2^2 + \log_2 2^{-4}\\[5pt] &= 2\cdot\log_2 2 + (-4)\cdot\log_2 2\\[5pt] &= 2\cdot 1 + (-4)\cdot 1\\[5pt] &= -2\,\textrm{.} \end{align}  | 
