Solution 3.3:3d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {  | + | We write the argument of <math>\log_{3}</math> as a power of 3,  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>9\cdot 3^{1/3} = 3^2\cdot 3^{1/3} = 3^{2+1/3} = 3^{7/3}\,,</math>}}  | 
| + | |||
| + | and then simplify the expression with the logarithm laws  | ||
| + | |||
| + | {{Displayed math||<math>\log _3 (9\cdot 3^{1/3}) = \log_3 3^{7/3} = \frac{7}{3}\cdot \log_3 3 = \frac{7}{3}\cdot 1 = \frac{7}{3}\,\textrm{.}</math>}}  | ||
Current revision
We write the argument of \displaystyle \log_{3} as a power of 3,
| \displaystyle 9\cdot 3^{1/3} = 3^2\cdot 3^{1/3} = 3^{2+1/3} = 3^{7/3}\,, | 
and then simplify the expression with the logarithm laws
| \displaystyle \log _3 (9\cdot 3^{1/3}) = \log_3 3^{7/3} = \frac{7}{3}\cdot \log_3 3 = \frac{7}{3}\cdot 1 = \frac{7}{3}\,\textrm{.} | 
