Solution 3.3:3a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | By writing the argument   | + | By writing the argument <math>8</math> as <math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3</math>, the logarithm law, <math>\lg a^b = b\lg a</math>, gives  | 
| - | <math>  | + | |
| - | as   | + | |
| - | <math>8=2\  | + | |
| - | <math>\lg a^  | + | |
| - | + | {{Displayed math||<math>\log _{2}8 = \log _{2} 2^3 = 3\cdot\log _{2}2 = 3\cdot 1 = 3\,,</math>}}  | |
| - | <math>\log _{2}8=\log _{2}2^  | + | |
| - | + | where we have used <math>\log _{2}2 = 1\,</math>.  | |
| - | where we have used   | + | |
| - | <math>\log _{2}2=1</math>.  | + | |
Current revision
By writing the argument \displaystyle 8 as \displaystyle 8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3, the logarithm law, \displaystyle \lg a^b = b\lg a, gives
| \displaystyle \log _{2}8 = \log _{2} 2^3 = 3\cdot\log _{2}2 = 3\cdot 1 = 3\,, | 
where we have used \displaystyle \log _{2}2 = 1\,.
