Solution 3.3:2h
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | The argument in the logarithm can be rewritten as   | + | The argument in the logarithm can be rewritten as <math>\frac{1}{10^{2}} = 10^{-2}</math> and then the log law <math>\lg a^b = b\lg a</math> gives the rest  | 
| - | <math>\frac{1}{10^{2}}=10^{-2}</math>  | + | |
| - | and then the log law   | + | |
| - | <math>\lg a^  | + | |
| - | gives the rest  | + | |
| - | + | {{Displayed math||<math>\lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.}</math>}}  | |
| - | <math>\lg \frac{1}{10^  | + | |
Current revision
The argument in the logarithm can be rewritten as \displaystyle \frac{1}{10^{2}} = 10^{-2} and then the log law \displaystyle \lg a^b = b\lg a gives the rest
| \displaystyle \lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.} | 
