Solution 3.3:2c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:2c moved to Solution 3.3:2c: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Because <math>\mathop{\text{lg}} 0\textrm{.}001</math> is defined as the exponent that should stand in the coloured box in the equality  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}001</math>}}  | 
| + | |||
| + | and we have that  | ||
| + | |||
| + | {{Displayed math||<math>10^{-3} = 0\textrm{.}001\,,</math>}}  | ||
| + | |||
| + | thus <math>\mathop{\text{lg}} 0\textrm{.}0001 = -3\,</math>.  | ||
Current revision
Because \displaystyle \mathop{\text{lg}} 0\textrm{.}001 is defined as the exponent that should stand in the coloured box in the equality
| \displaystyle 10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}001 | 
and we have that
| \displaystyle 10^{-3} = 0\textrm{.}001\,, | 
thus \displaystyle \mathop{\text{lg}} 0\textrm{.}0001 = -3\,.
