Solution 3.3:2a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_2a.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The logarithm <math>\mathop{\text{lg}} 0\textrm{.}1</math> is defined as that number which should stand in the coloured box in order that the equality  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1</math>}}  | 
| + | |||
| + | should hold. In this case, we see that  | ||
| + | |||
| + | {{Displayed math||<math>10^{-1} = 0\textrm{.}1</math>}}  | ||
| + | |||
| + | and therefore <math>\mathop{\text{lg}} 0\textrm{.}1 = -1\,</math>.  | ||
Current revision
The logarithm \displaystyle \mathop{\text{lg}} 0\textrm{.}1 is defined as that number which should stand in the coloured box in order that the equality
| \displaystyle 10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1 | 
should hold. In this case, we see that
| \displaystyle 10^{-1} = 0\textrm{.}1 | 
and therefore \displaystyle \mathop{\text{lg}} 0\textrm{.}1 = -1\,.
