Solution 3.2:5
From Förberedande kurs i matematik 1
 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_2_5-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:3_2_5-1(2).gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | After squaring both sides, we obtain the equation  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>3x-2 = (2-x)^2</math>|(*)}}  | 
| - | {{  | + | |
| - | <  | + | and if we expand the right-hand side and then collect the terms, we get  | 
| - | {{  | + | |
| + | {{Displayed math||<math>x^{2}-7x+6=0\,\textrm{.}</math>}}  | ||
| + | |||
| + | Completing the square of the left-hand side, we obtain  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | x^{2}-7x+6  | ||
| + | &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2+6\\[5pt]   | ||
| + | &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{49}{4} + \frac{24}{4}\\[5pt]   | ||
| + | &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{25}{4}   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | which means that the equation can be written as  | ||
| + | |||
| + | {{Displayed math||<math>\Bigl(x-\frac{7}{2}\Bigr)^2 = \frac{25}{4}</math>}}  | ||
| + | |||
| + | and the solutions are therefore  | ||
| + | |||
| + | :*<math>x = \frac{7}{2} + \sqrt{\frac{25}{4}} = \frac{7}{2} + \frac{5}{2} = \frac{12}{2} = 6\,,</math>  | ||
| + | |||
| + | :*<math>x = \frac{7}{2} - \sqrt{\frac{25}{4}} = \frac{7}{2} - \frac{5}{2} = \frac{2}{2} = 1\,\textrm{.}</math>  | ||
| + | |||
| + | Substituting <math>x=1</math> and <math>x=6</math> into the quadratic equation (*) shows that we have solved the equation correctly.  | ||
| + | |||
| + | :*''x'' = 1: <math>\ \text{LHS} = 3\cdot 1-2 = 1\ </math> and <math>\ \text{RHS} = (2-1)^2 = 1</math>  | ||
| + | |||
| + | :*''x'' = 6: <math>\ \text{LHS} = 3\cdot 6-2 = 16\ </math> and <math>\ \text{RHS} = (2-6)^2 = 16</math>  | ||
| + | |||
| + | Finally, we need to sort away possible spurious roots to the root equation by verifying the solutions.  | ||
| + | |||
| + | :*''x'' = 1: <math>\ \text{LHS} = \sqrt{3\cdot 1-2} = 1\ </math> and <math>\ \text{RHS} = 2-1 = 1</math>  | ||
| + | |||
| + | :*''x'' = 6: <math>\ \text{LHS} = \sqrt{3\cdot 6-2} = 4\ </math> and <math>\ \text{RHS} = 2-6 = -4</math>  | ||
| + | |||
| + | This shows that the root equation has the solution <math>x=1\,</math>.  | ||
Current revision
After squaring both sides, we obtain the equation
| \displaystyle 3x-2 = (2-x)^2 | (*) | 
and if we expand the right-hand side and then collect the terms, we get
| \displaystyle x^{2}-7x+6=0\,\textrm{.} | 
Completing the square of the left-hand side, we obtain
| \displaystyle \begin{align}
 x^{2}-7x+6 &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2+6\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{49}{4} + \frac{24}{4}\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{25}{4} \end{align}  | 
which means that the equation can be written as
| \displaystyle \Bigl(x-\frac{7}{2}\Bigr)^2 = \frac{25}{4} | 
and the solutions are therefore
- \displaystyle x = \frac{7}{2} + \sqrt{\frac{25}{4}} = \frac{7}{2} + \frac{5}{2} = \frac{12}{2} = 6\,,
 
- \displaystyle x = \frac{7}{2} - \sqrt{\frac{25}{4}} = \frac{7}{2} - \frac{5}{2} = \frac{2}{2} = 1\,\textrm{.}
 
Substituting \displaystyle x=1 and \displaystyle x=6 into the quadratic equation (*) shows that we have solved the equation correctly.
- x = 1: \displaystyle \ \text{LHS} = 3\cdot 1-2 = 1\ and \displaystyle \ \text{RHS} = (2-1)^2 = 1
 
- x = 6: \displaystyle \ \text{LHS} = 3\cdot 6-2 = 16\ and \displaystyle \ \text{RHS} = (2-6)^2 = 16
 
Finally, we need to sort away possible spurious roots to the root equation by verifying the solutions.
- x = 1: \displaystyle \ \text{LHS} = \sqrt{3\cdot 1-2} = 1\ and \displaystyle \ \text{RHS} = 2-1 = 1
 
- x = 6: \displaystyle \ \text{LHS} = \sqrt{3\cdot 6-2} = 4\ and \displaystyle \ \text{RHS} = 2-6 = -4
 
This shows that the root equation has the solution \displaystyle x=1\,.
