Solution 3.2:3
From Förberedande kurs i matematik 1
m  (Lösning 3.2:3 moved to Solution 3.2:3: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | First, we move the 2 to the right-hand side to get  <math>\sqrt{3x-8}=x-2</math> and then square away the root sign,  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>3x-8 = (x-2)^{2}</math>|(*)}}  | 
| - | {{  | + | |
| - | <  | + | or, with the right-hand side expanded  | 
| - | {{  | + | |
| + | {{Displayed math||<math>3x-8=x^{2}-4x+4\,\textrm{.}</math>}}  | ||
| + | |||
| + | If we move over all the terms to the left-hand side, we get  | ||
| + | |||
| + | {{Displayed math||<math>x^{2}-7x+12=0\,\textrm{.}</math>}}  | ||
| + | |||
| + | If we complete the square of the left-hand side,  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | x^2-7x+12 &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2 + 12\\[5pt]   | ||
| + | &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{49}{4} + \frac{48}{4}\\[5pt]   | ||
| + | &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{1}{4}   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | the equation can be written as   | ||
| + | |||
| + | {{Displayed math||<math>\Bigl(x-\frac{7}{2}\Bigr)^{2} = \frac{1}{4}</math>}}  | ||
| + | |||
| + | and the solutions are  | ||
| + | |||
| + | :*<math>x = \frac{7}{2} + \sqrt{\frac{1}{4}} = \frac{7}{2} + \frac{1}{2} = \frac{8}{2} = 4\,,</math>  | ||
| + | |||
| + | :*<math>x = \frac{7}{2} - \sqrt{\frac{1}{4}} = \frac{7}{2} - \frac{1}{2} = \frac{6}{2} = 3\,\textrm{.}</math>  | ||
| + | |||
| + | To be on the safe side, we verify that <math>x=3</math> and <math>x=4</math> satisfy the squared equation (*)  | ||
| + | |||
| + | {|  | ||
| + | ||<ul><li>''x'' = 3:</li></ul>  | ||
| + | ||<math>\ \text{LHS} = 3\cdot 3-8 = 9-8 = 1</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | ||<math>\ \text{RHS} = (3-2)^2 = 1</math>  | ||
| + | |-  | ||
| + | ||<ul><li>''x'' = 4:</li></ul>  | ||
| + | ||<math>\ \text{LHS} = 3\cdot 4-8 = 12-8 = 4</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | ||<math>\ \text{RHS} = (4-2)^2 = 4</math>  | ||
| + | |}  | ||
| + | |||
| + | Because we squared the root equation, possible spurious roots turn up and we therefore have to verify the solutions when we go back to the original root equation:  | ||
| + | |||
| + | {|  | ||
| + | ||<ul><li>''x'' = 3:</li></ul>  | ||
| + | ||<math>\ \text{LHS} = \sqrt{3\cdot 3-8} + 2 = \sqrt{9-8} + 2 = 1+2 = 3</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | ||<math>\ \text{RHS} = 3</math>  | ||
| + | |-  | ||
| + | ||<ul><li>''x'' = 4:</li></ul>  | ||
| + | ||<math>\ \text{LHS} = \sqrt{3\cdot 4-8}-2 = \sqrt{12-8}+2 = 2+2 = 4</math> and  | ||
| + | |-  | ||
| + | ||  | ||
| + | ||<math>\ \text{RHS} = 4</math>  | ||
| + | |}  | ||
| + | |||
| + | The solutions to the root equation are <math>x=3</math> and <math>x=4</math>.  | ||
Current revision
First, we move the 2 to the right-hand side to get \displaystyle \sqrt{3x-8}=x-2 and then square away the root sign,
| \displaystyle 3x-8 = (x-2)^{2} | (*) | 
or, with the right-hand side expanded
| \displaystyle 3x-8=x^{2}-4x+4\,\textrm{.} | 
If we move over all the terms to the left-hand side, we get
| \displaystyle x^{2}-7x+12=0\,\textrm{.} | 
If we complete the square of the left-hand side,
| \displaystyle \begin{align}
 x^2-7x+12 &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \Bigl(\frac{7}{2}\Bigr)^2 + 12\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{49}{4} + \frac{48}{4}\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^2 - \frac{1}{4} \end{align}  | 
the equation can be written as
| \displaystyle \Bigl(x-\frac{7}{2}\Bigr)^{2} = \frac{1}{4} | 
and the solutions are
- \displaystyle x = \frac{7}{2} + \sqrt{\frac{1}{4}} = \frac{7}{2} + \frac{1}{2} = \frac{8}{2} = 4\,,
 
- \displaystyle x = \frac{7}{2} - \sqrt{\frac{1}{4}} = \frac{7}{2} - \frac{1}{2} = \frac{6}{2} = 3\,\textrm{.}
 
To be on the safe side, we verify that \displaystyle x=3 and \displaystyle x=4 satisfy the squared equation (*)
  | \displaystyle \ \text{LHS} = 3\cdot 3-8 = 9-8 = 1 and | 
| \displaystyle \ \text{RHS} = (3-2)^2 = 1 | |
  | \displaystyle \ \text{LHS} = 3\cdot 4-8 = 12-8 = 4 and | 
| \displaystyle \ \text{RHS} = (4-2)^2 = 4 | 
Because we squared the root equation, possible spurious roots turn up and we therefore have to verify the solutions when we go back to the original root equation:
  | \displaystyle \ \text{LHS} = \sqrt{3\cdot 3-8} + 2 = \sqrt{9-8} + 2 = 1+2 = 3 and | 
| \displaystyle \ \text{RHS} = 3 | |
  | \displaystyle \ \text{LHS} = \sqrt{3\cdot 4-8}-2 = \sqrt{12-8}+2 = 2+2 = 4 and | 
| \displaystyle \ \text{RHS} = 4 | 
The solutions to the root equation are \displaystyle x=3 and \displaystyle x=4.
