Solution 3.1:7b
From Förberedande kurs i matematik 1
m   | 
			|||
| Line 1: | Line 1: | ||
We multiply the top and bottom of the fraction by the conjugate of the denominator,   | We multiply the top and bottom of the fraction by the conjugate of the denominator,   | ||
| - | <math>\sqrt{7}+\sqrt{5}</math>  | + | <math>\sqrt{7}+\sqrt{5}</math>, and see what it leads to,  | 
| - | , and see what it leads to  | + | |
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | <math>\begin{align}  | + | \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}  | 
| - | & \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\  | + | &= \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\cdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}\\[10pt]  | 
| - | & =\frac{5\sqrt{7}\  | + | &= \frac{(5\sqrt{7}-7\sqrt{5})(\sqrt{7}+\sqrt{5})}{(\sqrt{7})^{2}-(\sqrt{5})^{2}}\\[10pt]  | 
| - | & =\frac{5  | + | &= \frac{5\sqrt{7}\cdot\sqrt{7}+5\sqrt{5}\cdot\sqrt{7}-7\sqrt{5}\cdot\sqrt{7}-7\sqrt{5}\cdot\sqrt{5}}{7-5}\\[10pt]   | 
| - | & =\frac{5\  | + | &= \frac{5(\sqrt{7})^{2}+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7(\sqrt{5})^{2}}{2}\\[10pt]   | 
| - | & =\frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}=\frac{  | + | &= \frac{5\cdot 7+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\cdot 5}{2}\\[10pt]   | 
| - | & =-\sqrt{35} \\   | + | &= \frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}\\[10pt]  | 
| - | \end{align}</math>  | + | &= \frac{(5-7)\sqrt{5}\sqrt{7}}{2}\\[10pt]  | 
| + | &= \frac{-2\sqrt{5\cdot 7}}{2}\\[10pt]   | ||
| + | &= -\sqrt{35}\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
Current revision
We multiply the top and bottom of the fraction by the conjugate of the denominator, \displaystyle \sqrt{7}+\sqrt{5}, and see what it leads to,
| \displaystyle \begin{align}
 \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}} &= \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\cdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}\\[10pt] &= \frac{(5\sqrt{7}-7\sqrt{5})(\sqrt{7}+\sqrt{5})}{(\sqrt{7})^{2}-(\sqrt{5})^{2}}\\[10pt] &= \frac{5\sqrt{7}\cdot\sqrt{7}+5\sqrt{5}\cdot\sqrt{7}-7\sqrt{5}\cdot\sqrt{7}-7\sqrt{5}\cdot\sqrt{5}}{7-5}\\[10pt] &= \frac{5(\sqrt{7})^{2}+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7(\sqrt{5})^{2}}{2}\\[10pt] &= \frac{5\cdot 7+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\cdot 5}{2}\\[10pt] &= \frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}\\[10pt] &= \frac{(5-7)\sqrt{5}\sqrt{7}}{2}\\[10pt] &= \frac{-2\sqrt{5\cdot 7}}{2}\\[10pt] &= -\sqrt{35}\,\textrm{.} \end{align}  | 
