Solution 3.1:6b
From Förberedande kurs i matematik 1
m   | 
			|||
| Line 1: | Line 1: | ||
| - | The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic   | + | The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic  | 
| - | + | ||
| - | + | ||
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | <math>\begin{align}  | + | (\sqrt{3}-2)^2  | 
| - | + | &= (\sqrt{3}\,)^{2} - 2\cdot\sqrt{3}\cdot 2 + 2^{2}\\[5pt]   | |
| - | & =3-4\sqrt{3}+4=7-4\sqrt{3} \\   | + | &= 3-4\sqrt{3}+4\\[5pt]  | 
| - | \end{align}</math>  | + | &= 7-4\sqrt{3}\,\textrm{.}   | 
| + | \end{align}</math>}}  | ||
Thus,  | Thus,  | ||
| + | {{Displayed math||<math>\frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}}</math>}}  | ||
| - | + | and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate <math>5+4\sqrt{3}</math>,  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate   | + | |
| - | <math>5+4\sqrt{3}</math>,  | + | |
| - | + | ||
| - | <math>\begin{align}  | + | {{Displayed math||<math>\begin{align}  | 
| - | + | \frac{1}{5-4\sqrt{3}}  | |
| - | & =\frac{5+4\sqrt{3}}{5^{2}-4^{2}  | + | &= \frac{1}{5-4\sqrt{3}}\cdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}\\[5pt]  | 
| - | & =\frac{5+4\sqrt{3}}{-23}=-\frac{5+4\sqrt{3}}{23} \\   | + | &= \frac{5+4\sqrt{3}}{5^{2}-(4\sqrt{3})^{2}}\\[5pt]   | 
| - | \end{align}</math>  | + | &= \frac{5+4\sqrt{3}}{5^{2}-4^{2}(\sqrt{3})^{2}}\\[5pt]  | 
| + | &= \frac{5+4\sqrt{3}}{25-16\cdot 3}\\[5pt]   | ||
| + | &= \frac{5+4\sqrt{3}}{-23}\\[5pt]  | ||
| + | &= -\frac{5+4\sqrt{3}}{23}\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Current revision
The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic
| \displaystyle \begin{align}
 (\sqrt{3}-2)^2 &= (\sqrt{3}\,)^{2} - 2\cdot\sqrt{3}\cdot 2 + 2^{2}\\[5pt] &= 3-4\sqrt{3}+4\\[5pt] &= 7-4\sqrt{3}\,\textrm{.} \end{align}  | 
Thus,
| \displaystyle \frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}} | 
and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate \displaystyle 5+4\sqrt{3},
| \displaystyle \begin{align}
 \frac{1}{5-4\sqrt{3}} &= \frac{1}{5-4\sqrt{3}}\cdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}\\[5pt] &= \frac{5+4\sqrt{3}}{5^{2}-(4\sqrt{3})^{2}}\\[5pt] &= \frac{5+4\sqrt{3}}{5^{2}-4^{2}(\sqrt{3})^{2}}\\[5pt] &= \frac{5+4\sqrt{3}}{25-16\cdot 3}\\[5pt] &= \frac{5+4\sqrt{3}}{-23}\\[5pt] &= -\frac{5+4\sqrt{3}}{23}\,\textrm{.} \end{align}  | 
