Solution 3.1:5a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | If we multiply the top and bottom of the fraction by <math>\sqrt{12}</math>, the new denominator will be <math>\sqrt{12}\cdot\sqrt{12} = 12</math> and we will get rid of the root sign in the denominator  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\frac{2}{\sqrt{12}} = \frac{2}{\sqrt{12}}\cdot \frac{\sqrt{12}}{\sqrt{12}} = \frac{2\sqrt{12}}{12} = \frac{2\sqrt{12}}{2\cdot 6} = \frac{\sqrt{12}}{6}\,\textrm{.}</math>}}  | 
| + | |||
| + | This expression can be simplified even further if we write <math>12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3</math> and take <math>2^2</math> out from under the root, we get  | ||
| + | |||
| + | {{Displayed math||<math>\frac{\sqrt{12}}{6} = \frac{2\sqrt{3}}{6} = \frac{2\sqrt{3}}{2\cdot 3} = \frac{\sqrt{3}}{3}\,\textrm{.}</math>}}  | ||
Current revision
If we multiply the top and bottom of the fraction by \displaystyle \sqrt{12}, the new denominator will be \displaystyle \sqrt{12}\cdot\sqrt{12} = 12 and we will get rid of the root sign in the denominator
| \displaystyle \frac{2}{\sqrt{12}} = \frac{2}{\sqrt{12}}\cdot \frac{\sqrt{12}}{\sqrt{12}} = \frac{2\sqrt{12}}{12} = \frac{2\sqrt{12}}{2\cdot 6} = \frac{\sqrt{12}}{6}\,\textrm{.} | 
This expression can be simplified even further if we write \displaystyle 12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3 and take \displaystyle 2^2 out from under the root, we get
| \displaystyle \frac{\sqrt{12}}{6} = \frac{2\sqrt{3}}{6} = \frac{2\sqrt{3}}{2\cdot 3} = \frac{\sqrt{3}}{3}\,\textrm{.} | 
