Solution 3.1:4b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_1_4b.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | By writing <math>0\textrm{.}027</math> as <math>27\cdot 10^{-3}</math>, where   | 
| - | <  | + | <math>27 = 3\cdot 3\cdot 3 = 3^3</math> and <math>10^{-3} = (10^{-1})^{3} = 0\textrm{.}1^3</math> we see that  | 
| - | {{  | + | |
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \sqrt[3]{0\textrm{.}027} &= \sqrt[3]{27\cdot 10^{-3}} = \sqrt[3]{27}\cdot\sqrt[3]{10^{-3}} = \sqrt[3]{3^{3}}\cdot\sqrt[3]{0\textrm{.}1^3}\\[5pt]   | ||
| + | &= 3\cdot 0\textrm{.}1 = 0\textrm{.}3\,\textrm{,}   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | where we have used <math>\sqrt[3]{a^{3}} = \bigl(a^{3}\bigr)^{1/3} = a^{3\cdot \frac{1}{3}} = a^{1} = a\,\textrm{.}</math>  | ||
Current revision
By writing \displaystyle 0\textrm{.}027 as \displaystyle 27\cdot 10^{-3}, where \displaystyle 27 = 3\cdot 3\cdot 3 = 3^3 and \displaystyle 10^{-3} = (10^{-1})^{3} = 0\textrm{.}1^3 we see that
| \displaystyle \begin{align}
 \sqrt[3]{0\textrm{.}027} &= \sqrt[3]{27\cdot 10^{-3}} = \sqrt[3]{27}\cdot\sqrt[3]{10^{-3}} = \sqrt[3]{3^{3}}\cdot\sqrt[3]{0\textrm{.}1^3}\\[5pt] &= 3\cdot 0\textrm{.}1 = 0\textrm{.}3\,\textrm{,} \end{align}  | 
where we have used \displaystyle \sqrt[3]{a^{3}} = \bigl(a^{3}\bigr)^{1/3} = a^{3\cdot \frac{1}{3}} = a^{1} = a\,\textrm{.}
