Solution 3.1:3d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_1_3d.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | We can multiply <math>\sqrt{\tfrac{2}{3}}</math> into the bracket and then write the root expressions together under a common root sign using the rule <math>\sqrt{a\vphantom{b}}\cdot \sqrt{b} = \sqrt{ab}</math>,  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\bigr) = \sqrt{\frac{2}{3}}\cdot\sqrt{6} - \sqrt{\frac{2}{3}}\cdot\sqrt{3} = \sqrt{\frac{2\cdot 6}{3}} - \sqrt{\frac{2\cdot 3}{3}}\,\textrm{.}</math>}}  | 
| + | |||
| + | Because <math>(2\cdot 6)/3 = 2\cdot 2 = 2^2</math> and <math>(2\cdot 3)/3 = 2</math>, we obtain   | ||
| + | |||
| + | {{Displayed math||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6} - \sqrt{3}\bigr) = \sqrt{2^2}-\sqrt{2} = 2-\sqrt{2}\,\textrm{.}</math>}}  | ||
Current revision
We can multiply \displaystyle \sqrt{\tfrac{2}{3}} into the bracket and then write the root expressions together under a common root sign using the rule \displaystyle \sqrt{a\vphantom{b}}\cdot \sqrt{b} = \sqrt{ab},
| \displaystyle \sqrt{\frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\bigr) = \sqrt{\frac{2}{3}}\cdot\sqrt{6} - \sqrt{\frac{2}{3}}\cdot\sqrt{3} = \sqrt{\frac{2\cdot 6}{3}} - \sqrt{\frac{2\cdot 3}{3}}\,\textrm{.} | 
Because \displaystyle (2\cdot 6)/3 = 2\cdot 2 = 2^2 and \displaystyle (2\cdot 3)/3 = 2, we obtain
| \displaystyle \sqrt{\frac{2}{3}}\bigl(\sqrt{6} - \sqrt{3}\bigr) = \sqrt{2^2}-\sqrt{2} = 2-\sqrt{2}\,\textrm{.} | 
