Solution 4.3:7a
From Förberedande kurs i matematik 1
m  (Lösning 4.3:7a moved to Solution 4.3:7a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | We can write the expression   | 
| - | <  | + | <math>\text{sin}\left( x+y \right)</math>  | 
| - | {{  | + | in terms of  | 
| + | <math>\text{sin }x</math>,   | ||
| + | <math>\text{cos }x</math>,   | ||
| + | <math>\text{sin }y</math>  | ||
| + | and    | ||
| + | <math>\text{cos }y</math>  | ||
| + | if we use the addition formula for sine,  | ||
| + | |||
| + | |||
| + | <math>\text{sin}\left( x+y \right)=\sin x\centerdot \cos y+\cos x\centerdot \sin y</math>  | ||
| + | |||
| + | |||
| + | In turn, it is possible to express the factors   | ||
| + | <math>\text{cos }x</math>  | ||
| + | and   | ||
| + | <math>\text{cos }y</math>  | ||
| + | in terms of   | ||
| + | <math>\text{sin }x</math>  | ||
| + | and   | ||
| + | <math>\text{sin }y</math>  | ||
| + | by using the Pythagorean identity,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \cos x=\pm \sqrt{1-\text{sin}^{2}x}=\pm \sqrt{1-\left( {2}/{3}\; \right)^{2}}=\pm \frac{\sqrt{5}}{3} \\   | ||
| + | & \cos y=\pm \sqrt{1-\text{sin}^{2}y}=\pm \sqrt{1-\left( {1}/{3}\; \right)^{2}}=\pm \frac{2\sqrt{2}}{3} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | |||
| + | Because   | ||
| + | <math>x</math>  | ||
| + | and   | ||
| + | <math>y</math>  | ||
| + | are angles in the first quadrant,   | ||
| + | <math>\text{cos }x</math>  | ||
| + | and   | ||
| + | <math>\text{cos }y</math>  | ||
| + | are positive, so we in fact have  | ||
| + | |||
| + | |||
| + | <math>\cos x=\frac{\sqrt{5}}{3}</math>  | ||
| + | and    | ||
| + | <math>\cos y=\frac{2\sqrt{2}}{3}</math>  | ||
| + | |||
| + | |||
| + | Finally, we obtain  | ||
| + | |||
| + | |||
| + | <math>\sin \left( x+y \right)=\frac{2}{3}\centerdot \frac{2\sqrt{2}}{3}+\frac{\sqrt{5}}{3}\centerdot \frac{1}{3}=\frac{4\sqrt{2}+\sqrt{5}}{9}</math>  | ||
Revision as of 10:14, 30 September 2008
We can write the expression \displaystyle \text{sin}\left( x+y \right) in terms of \displaystyle \text{sin }x, \displaystyle \text{cos }x, \displaystyle \text{sin }y and \displaystyle \text{cos }y if we use the addition formula for sine,
\displaystyle \text{sin}\left( x+y \right)=\sin x\centerdot \cos y+\cos x\centerdot \sin y
In turn, it is possible to express the factors 
\displaystyle \text{cos }x
and 
\displaystyle \text{cos }y
in terms of 
\displaystyle \text{sin }x
and 
\displaystyle \text{sin }y
by using the Pythagorean identity,
\displaystyle \begin{align}
& \cos x=\pm \sqrt{1-\text{sin}^{2}x}=\pm \sqrt{1-\left( {2}/{3}\; \right)^{2}}=\pm \frac{\sqrt{5}}{3} \\ 
& \cos y=\pm \sqrt{1-\text{sin}^{2}y}=\pm \sqrt{1-\left( {1}/{3}\; \right)^{2}}=\pm \frac{2\sqrt{2}}{3} \\ 
\end{align}
Because \displaystyle x and \displaystyle y are angles in the first quadrant, \displaystyle \text{cos }x and \displaystyle \text{cos }y are positive, so we in fact have
\displaystyle \cos x=\frac{\sqrt{5}}{3}
and  
\displaystyle \cos y=\frac{2\sqrt{2}}{3}
 
Finally, we obtain
\displaystyle \sin \left( x+y \right)=\frac{2}{3}\centerdot \frac{2\sqrt{2}}{3}+\frac{\sqrt{5}}{3}\centerdot \frac{1}{3}=\frac{4\sqrt{2}+\sqrt{5}}{9}
