Solution 4.3:6a
From Förberedande kurs i matematik 1
m  (Lösning 4.3:6a moved to Solution 4.3:6a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | + | If we think of the angle v as an angle in the unit circle, then  | |
| - | <  | + | <math>v</math>  | 
| - | + | lies in the fourth quadrant and has   | |
| - | + | <math>x</math>  | |
| - | <  | + | -coordinate   | 
| - | {{  | + | <math>\frac{3}{4}</math>.  | 
| + | |||
[[Image:4_3_6_a1.gif|center]]  | [[Image:4_3_6_a1.gif|center]]  | ||
| + | |||
| + | If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to   | ||
| + | <math>\text{1}</math>  | ||
| + | and an opposite side equal to   | ||
| + | <math>\frac{3}{4}</math>.  | ||
| + | |||
[[Image:4_3_6_a2.gif|center]]  | [[Image:4_3_6_a2.gif|center]]  | ||
| + | |||
| + | Using Pythagoras' theorem, it is possible to determine the remaining side from  | ||
| + | |||
| + | |||
| + | |||
| + | <math>b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2}</math>  | ||
| + | |||
| + | |||
| + | which gives that   | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2} \\   | ||
| + | & b=\sqrt{1-\left( \frac{3}{4} \right)^{2}}=\sqrt{1-\frac{9}{16}}=\sqrt{\frac{7}{16}}=\frac{\sqrt{7}}{4} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | Because the angle   | ||
| + | <math>v</math>  | ||
| + | belongs to the fourth quadrant, its   | ||
| + | <math>y</math>  | ||
| + | -coordinate is negative and is therefore equal to  | ||
| + | <math>-b</math>, i.e.  | ||
| + | |||
| + | |||
| + | <math>\sin v=-\frac{\sqrt{7}}{4}</math>  | ||
| + | |||
| + | |||
| + | Thus, we have directly that  | ||
| + | |||
| + | |||
| + | <math>\tan v=\frac{\sin v}{\cos v}=\frac{-\frac{\sqrt{7}}{4}}{\frac{3}{4}}=-\frac{\sqrt{7}}{3}</math>  | ||
Revision as of 09:12, 30 September 2008
If we think of the angle v as an angle in the unit circle, then \displaystyle v lies in the fourth quadrant and has \displaystyle x -coordinate \displaystyle \frac{3}{4}.
If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to \displaystyle \text{1} and an opposite side equal to \displaystyle \frac{3}{4}.
Using Pythagoras' theorem, it is possible to determine the remaining side from
\displaystyle b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2}
which gives that 
\displaystyle \begin{align}
& b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2} \\ 
& b=\sqrt{1-\left( \frac{3}{4} \right)^{2}}=\sqrt{1-\frac{9}{16}}=\sqrt{\frac{7}{16}}=\frac{\sqrt{7}}{4} \\ 
\end{align}
Because the angle 
\displaystyle v
belongs to the fourth quadrant, its 
\displaystyle y
-coordinate is negative and is therefore equal to
\displaystyle -b, i.e.
\displaystyle \sin v=-\frac{\sqrt{7}}{4}
Thus, we have directly that
\displaystyle \tan v=\frac{\sin v}{\cos v}=\frac{-\frac{\sqrt{7}}{4}}{\frac{3}{4}}=-\frac{\sqrt{7}}{3}


