Solution 3.1:2e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.1:2e moved to Solution 3.1:2e: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Looking first at <math>\sqrt{18}</math> this square root expression can be simplified by writing 18 as a product of its smallest possible integer factors  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>18 = 2\cdot 9 = 2\cdot 3\cdot 3 = 2\cdot 3^{2}</math>}}  | 
| + | |||
| + | and then we can take the quadratic out of the square root sign by using the rule   | ||
| + | <math>\sqrt{a^{2}b}=a\sqrt{b}</math> (valid for non-negative ''a'' and ''b''),  | ||
| + | |||
| + | {{Displayed math||<math>\sqrt{18} = \sqrt{2\cdot 3^{2}} = 3\sqrt{2}\,\textrm{.}</math>}}  | ||
| + | |||
| + | In the same way, we write <math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3}</math> and get  | ||
| + | |||
| + | {{Displayed math||<math>\sqrt{8} = \sqrt{2\cdot 2^{2}} = 2\sqrt{2}\,\textrm{.}</math>}}  | ||
| + | |||
| + | All together, we get  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \sqrt{18}\sqrt{8}  | ||
| + | &= 3\sqrt{2}\cdot 2\sqrt{2}\\[5pt]  | ||
| + | &= 3\cdot 2\cdot \bigl(\sqrt{2}\bigr)^{2}\\[5pt]   | ||
| + | &= 3\cdot 2\cdot 2\\[5pt]  | ||
| + | &= 12\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
Current revision
Looking first at \displaystyle \sqrt{18} this square root expression can be simplified by writing 18 as a product of its smallest possible integer factors
| \displaystyle 18 = 2\cdot 9 = 2\cdot 3\cdot 3 = 2\cdot 3^{2} | 
and then we can take the quadratic out of the square root sign by using the rule \displaystyle \sqrt{a^{2}b}=a\sqrt{b} (valid for non-negative a and b),
| \displaystyle \sqrt{18} = \sqrt{2\cdot 3^{2}} = 3\sqrt{2}\,\textrm{.} | 
In the same way, we write \displaystyle 8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3} and get
| \displaystyle \sqrt{8} = \sqrt{2\cdot 2^{2}} = 2\sqrt{2}\,\textrm{.} | 
All together, we get
| \displaystyle \begin{align}
 \sqrt{18}\sqrt{8} &= 3\sqrt{2}\cdot 2\sqrt{2}\\[5pt] &= 3\cdot 2\cdot \bigl(\sqrt{2}\bigr)^{2}\\[5pt] &= 3\cdot 2\cdot 2\\[5pt] &= 12\,\textrm{.} \end{align}  | 
