Solution 2.3:6c
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_3_6c.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | If we complete the square of the expression, we have that |
| - | + | ||
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | x^{2} - 5x + 7 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 7\\[5pt] | ||
| + | &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{28}{4}\\[5pt] | ||
| + | &= \Bigl(x-\frac{5}{2}\Bigr)^{2} + \frac{3}{4} | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | and because <math>\bigl(x-\tfrac{5}{2}\bigr)^{2}</math> is a quadratic, this term assumes a minimal value zero when <math>x=5/2\,</math>. This shows that the polynomial's smallest value is <math>\tfrac{3}{4}</math>. | ||
Current revision
If we complete the square of the expression, we have that
| \displaystyle \begin{align}
x^{2} - 5x + 7 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 7\\[5pt] &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{28}{4}\\[5pt] &= \Bigl(x-\frac{5}{2}\Bigr)^{2} + \frac{3}{4} \end{align} |
and because \displaystyle \bigl(x-\tfrac{5}{2}\bigr)^{2} is a quadratic, this term assumes a minimal value zero when \displaystyle x=5/2\,. This shows that the polynomial's smallest value is \displaystyle \tfrac{3}{4}.
