Solution 4.3:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.3:3f moved to Solution 4.3:3f: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | In this case, it is perhaps simplest to use the addition formula for sine,  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\sin \left( \frac{\pi }{3}+v \right)=\sin \frac{\pi }{3}\centerdot \cos v+\cos \frac{\pi }{3}\centerdot \sin v.</math>  | ||
| + | |||
| + | Since   | ||
| + | <math>\sin \frac{\pi }{3}=\frac{\sqrt{3}}{2},\ \ \cos \frac{\pi }{3}=\frac{1}{2},\ \ \sin v=a</math>, and   | ||
| + | <math>\cos v=\sqrt{1-a^{2}}</math>  | ||
| + | this can be written as   | ||
| + | |||
| + | |||
| + | <math>\sin \left( \frac{\pi }{3}+v \right)=\frac{\sqrt{3}}{2}\sqrt{1-a^{2}}+\frac{1}{2}a.</math>  | ||
Revision as of 11:34, 29 September 2008
In this case, it is perhaps simplest to use the addition formula for sine,
\displaystyle \sin \left( \frac{\pi }{3}+v \right)=\sin \frac{\pi }{3}\centerdot \cos v+\cos \frac{\pi }{3}\centerdot \sin v.
Since \displaystyle \sin \frac{\pi }{3}=\frac{\sqrt{3}}{2},\ \ \cos \frac{\pi }{3}=\frac{1}{2},\ \ \sin v=a, and \displaystyle \cos v=\sqrt{1-a^{2}} this can be written as
\displaystyle \sin \left( \frac{\pi }{3}+v \right)=\frac{\sqrt{3}}{2}\sqrt{1-a^{2}}+\frac{1}{2}a.
