Solution 4.3:3d
From Förberedande kurs i matematik 1
m  (Lösning 4.3:3d moved to Solution 4.3:3d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The expression for the angle   | 
| - | <  | + | <math>{\pi }/{2}\;-v</math>  | 
| - | {{  | + | differs from   | 
| + | <math>{\pi }/{2}\;</math>  | ||
| + | by as much as   | ||
| + | <math>-v\text{ }</math>  | ||
| + | differs from  | ||
| + | <math>0</math>. This means that   | ||
| + | <math>{\pi }/{2}\;</math>  | ||
| + | makes the same angle with the positive   | ||
| + | <math>y</math>  | ||
| + | -axis as   | ||
| + | <math>-v\text{ }</math>  | ||
| + | makes with the positive   | ||
| + | <math>x</math>  | ||
| + | -axis.  | ||
| + | |||
| + | |||
[[Image:4_3_3_d.gif|center]]  | [[Image:4_3_3_d.gif|center]]  | ||
| + | |||
| + | Angle   | ||
| + | <math>v</math>  | ||
| + | angle  | ||
| + | <math>\pi -v</math>  | ||
| + | |||
| + | |||
| + | Therefore, the angle   | ||
| + | <math>{\pi }/{2}\;-v</math>  | ||
| + | has a   | ||
| + | <math>y</math>  | ||
| + | -coordinate which is equal to the   | ||
| + | <math>x</math>  | ||
| + | -coordinate for the angle  | ||
| + | <math>v</math>, i.e.  | ||
| + | |||
| + | |||
| + | <math>\sin \left( {\pi }/{2}\;-v \right)=\cos v</math>  | ||
| + | |||
| + | |||
| + | and from exercise c, we know that    | ||
| + | <math>\cos v=\sqrt{1-a^{2}}</math>  | ||
| + | |||
| + | |||
| + | |||
| + | <math>\sin \left( \frac{\pi }{2}-v \right)=\sqrt{1-a^{2}}</math>  | ||
Revision as of 11:11, 29 September 2008
The expression for the angle \displaystyle {\pi }/{2}\;-v differs from \displaystyle {\pi }/{2}\; by as much as \displaystyle -v\text{ } differs from \displaystyle 0. This means that \displaystyle {\pi }/{2}\; makes the same angle with the positive \displaystyle y -axis as \displaystyle -v\text{ } makes with the positive \displaystyle x -axis.
Angle \displaystyle v angle \displaystyle \pi -v
Therefore, the angle 
\displaystyle {\pi }/{2}\;-v
has a 
\displaystyle y
-coordinate which is equal to the 
\displaystyle x
-coordinate for the angle
\displaystyle v, i.e.
\displaystyle \sin \left( {\pi }/{2}\;-v \right)=\cos v
and from exercise c, we know that  
\displaystyle \cos v=\sqrt{1-a^{2}}
\displaystyle \sin \left( \frac{\pi }{2}-v \right)=\sqrt{1-a^{2}}

