Solution 4.3:3b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.3:3b moved to Solution 4.3:3b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | The angle   | 
| - | <  | + | <math>\pi -v\text{ }</math>  | 
| - | {  | + | makes the same angle with the negative   | 
| + | <math>x</math>  | ||
| + | -axis as the angle   | ||
| + | <math>v</math>  | ||
| + | makes with the positive   | ||
| + | <math>x</math>  | ||
| + | -axis and this means that   | ||
| + | <math>\pi -v\text{ }</math>  | ||
| + | is the reflection of   | ||
| + | <math>v</math>  | ||
| + | in the y-axis.  | ||
| + | |||
[[Image:4_3_3_b.gif|center]]  | [[Image:4_3_3_b.gif|center]]  | ||
| + | |||
| + | Under such reflection, the angle's   | ||
| + | <math>y</math>  | ||
| + | -coordinate does not change (but the   | ||
| + | <math>x</math>  | ||
| + | -coordinate changes sign) and therefore   | ||
| + | <math>\text{sin}\left( \pi -v \right)=\text{sin }v\text{ }=a</math>.  | ||
Revision as of 10:51, 29 September 2008
The angle \displaystyle \pi -v\text{ } makes the same angle with the negative \displaystyle x -axis as the angle \displaystyle v makes with the positive \displaystyle x -axis and this means that \displaystyle \pi -v\text{ } is the reflection of \displaystyle v in the y-axis.
Under such reflection, the angle's \displaystyle y -coordinate does not change (but the \displaystyle x -coordinate changes sign) and therefore \displaystyle \text{sin}\left( \pi -v \right)=\text{sin }v\text{ }=a.

