Solution 4.2:7
From Förberedande kurs i matematik 1
m  (Lösning 4.2:7 moved to Solution 4.2:7: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | + | If extend the line   | |
| - | <  | + | <math>\text{AB}</math>  | 
| - | {  | + | to a point   | 
| - | {  | + | <math>\text{D}</math>  | 
| - | <  | + | opposite  | 
| - | {{  | + | <math>\text{C}</math>, we will get the right-angled triangle shown below, where the distance   | 
| + | <math>x</math>  | ||
| + | between   | ||
| + | <math>\text{C}</math>  | ||
| + | and   | ||
| + | <math>\text{D}</math>  | ||
| + | is the desired distance.  | ||
[[Image:4_2_7_1.gif|center]]  | [[Image:4_2_7_1.gif|center]]  | ||
| + | |||
| + | The information in the exercise can be summarized by considering the two triangles   | ||
| + | <math>\text{ACD}</math>  | ||
| + | and  | ||
| + | <math>\text{BCD}</math>, and setting up relations for the tangents that the angles   | ||
| + | <math>\text{3}0^{\circ }</math>  | ||
| + | and   | ||
| + | <math>\text{45}^{\circ }</math>  | ||
| + | gives rise to,  | ||
| + | |||
| + | |||
[[Image:4_2_7_2.gif|center]]  | [[Image:4_2_7_2.gif|center]]  | ||
| + | |||
| + | <math>x=\left( 100+y \right)\tan 30^{\circ }=\left( 100+y \right)\frac{1}{\sqrt{3}}</math>  <math>x=y\centerdot \tan 45^{\circ }=y\centerdot 1</math>  | ||
| + | |||
| + | |||
| + | |||
| + | where   | ||
| + | <math>y</math>  | ||
| + | is the distance between B and D.  | ||
| + | |||
| + | The second relation above gives that   | ||
| + | <math>y=x</math>  | ||
| + | and substituting this into the first relation gives  | ||
| + | |||
| + | |||
| + | <math>x=\left( 100+x \right)\frac{1}{\sqrt{3}}</math>  | ||
| + | |||
| + | |||
| + | Multiplying both sides by   | ||
| + | <math>\sqrt{3}</math>  | ||
| + | gives  | ||
| + | |||
| + | |||
| + | <math>\sqrt{3}x=100+x</math>  | ||
| + | |||
| + | |||
| + | moving all the x-terms to the left-hand side gives  | ||
| + | |||
| + | |||
| + | <math>\left( \sqrt{3}-1 \right)x=100</math>  | ||
| + | |||
| + | |||
| + | The answer is  | ||
| + | |||
| + | |||
| + | <math>x=\frac{100}{\sqrt{3}-1}\ \text{m}\quad \approx \quad \text{136}\text{.6}\ \text{m}</math>  | ||
Revision as of 08:55, 29 September 2008
If extend the line \displaystyle \text{AB} to a point \displaystyle \text{D} opposite \displaystyle \text{C}, we will get the right-angled triangle shown below, where the distance \displaystyle x between \displaystyle \text{C} and \displaystyle \text{D} is the desired distance.
The information in the exercise can be summarized by considering the two triangles \displaystyle \text{ACD} and \displaystyle \text{BCD}, and setting up relations for the tangents that the angles \displaystyle \text{3}0^{\circ } and \displaystyle \text{45}^{\circ } gives rise to,
\displaystyle x=\left( 100+y \right)\tan 30^{\circ }=\left( 100+y \right)\frac{1}{\sqrt{3}} \displaystyle x=y\centerdot \tan 45^{\circ }=y\centerdot 1
where \displaystyle y is the distance between B and D.
The second relation above gives that \displaystyle y=x and substituting this into the first relation gives
\displaystyle x=\left( 100+x \right)\frac{1}{\sqrt{3}}
Multiplying both sides by 
\displaystyle \sqrt{3}
gives
\displaystyle \sqrt{3}x=100+x
moving all the x-terms to the left-hand side gives
\displaystyle \left( \sqrt{3}-1 \right)x=100
The answer is
\displaystyle x=\frac{100}{\sqrt{3}-1}\ \text{m}\quad \approx \quad \text{136}\text{.6}\ \text{m}


