Solution 4.2:6
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.2:6 moved to Solution 4.2:6: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | We can work out the length we are looking for by taking the difference   | 
| - | <  | + | <math>a-b\text{ }</math>  | 
| - | + | of the sides   | |
| + | <math>a</math>  | ||
| + | and   | ||
| + | <math>b</math>  | ||
| + | in the triangles below:  | ||
| + | |||
[[Image:4_2_6_13.gif|center]]  | [[Image:4_2_6_13.gif|center]]  | ||
[[Image:4_2_6_2.gif|center]]  | [[Image:4_2_6_2.gif|center]]  | ||
| + | |||
| + | If we take the tangent of the given angle in each triangle, we easily obtain   | ||
| + | <math>a</math>  | ||
| + | and  | ||
| + | <math>b</math>:  | ||
| + | |||
| + | |||
[[Image:4_2_6_13.gif|center]]  | [[Image:4_2_6_13.gif|center]]  | ||
[[Image:4_2_6_4.gif|center]]  | [[Image:4_2_6_4.gif|center]]  | ||
| + | |||
| + | <math>a=1\centerdot \tan 60^{\circ }=\frac{\sin 60^{\circ }}{\cos 60^{\circ }}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}</math>  | ||
Revision as of 08:29, 29 September 2008
We can work out the length we are looking for by taking the difference \displaystyle a-b\text{ } of the sides \displaystyle a and \displaystyle b in the triangles below:
If we take the tangent of the given angle in each triangle, we easily obtain \displaystyle a and \displaystyle b:
\displaystyle a=1\centerdot \tan 60^{\circ }=\frac{\sin 60^{\circ }}{\cos 60^{\circ }}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}



