Solution 4.2:5c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.2:5c moved to Solution 4.2:5c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | If we express the angle   | 
| - | <  | + | <math>\text{33}0^{\circ }</math>  | 
| - | {{  | + | in radians, we obtain  | 
| + | |||
| + | |||
| + | <math>\text{33}0^{\circ }=\text{33}0^{\circ }\centerdot \frac{\pi }{180^{\circ }}</math>  | ||
| + | radians  | ||
| + | <math>=\frac{11\pi }{6}</math>  | ||
| + | radians  | ||
| + | |||
| + | and from exercise 3.3:1g, we know that   | ||
| + | |||
| + | |||
| + | <math>\cos 330^{\circ }=\cos \frac{11\pi }{6}=\frac{\sqrt{3}}{2}</math>.  | ||
Revision as of 08:09, 29 September 2008
If we express the angle \displaystyle \text{33}0^{\circ } in radians, we obtain
\displaystyle \text{33}0^{\circ }=\text{33}0^{\circ }\centerdot \frac{\pi }{180^{\circ }}
radians
\displaystyle =\frac{11\pi }{6}
radians
and from exercise 3.3:1g, we know that
\displaystyle \cos 330^{\circ }=\cos \frac{11\pi }{6}=\frac{\sqrt{3}}{2}.
