Solution 4.2:3d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.2:3d moved to Solution 4.2:3d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | In order to get an angle between   | 
| - | <  | + | <math>0</math>  | 
| - | {{  | + | and   | 
| + | <math>\text{2}\pi </math>, we subtract   | ||
| + | <math>\text{2}\pi </math>  | ||
| + | from   | ||
| + | <math>{7\pi }/{2}\;</math>  | ||
| + | , which also leaves the cosine value unchanged  | ||
| + | |||
| + | |||
| + | <math>\cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi  \right)=\cos \frac{3\pi }{2}</math>  | ||
| + | |||
| + | |||
| + | When we draw a line which makes an angle   | ||
| + | <math>{3\pi }/{2}\;</math>  | ||
| + | with the positive   | ||
| + | <math>x</math>  | ||
| + | -axis, we get the negative   | ||
| + | <math>y</math>  | ||
| + | -axis and we see that this line cuts the unit circle at the point   | ||
| + | <math>\left( 0 \right.,\left. -1 \right)</math>. The   | ||
| + | <math>x</math>  | ||
| + | -coordinate of the intersection point is thus   | ||
| + | <math>0</math>  | ||
| + | and hence   | ||
| + | <math>\cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0</math>  | ||
| + | |||
| + | |||
| + | |||
[[Image:4_2_3_d.gif|center]]  | [[Image:4_2_3_d.gif|center]]  | ||
Revision as of 12:06, 28 September 2008
In order to get an angle between \displaystyle 0 and \displaystyle \text{2}\pi , we subtract \displaystyle \text{2}\pi from \displaystyle {7\pi }/{2}\; , which also leaves the cosine value unchanged
\displaystyle \cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi  \right)=\cos \frac{3\pi }{2}
When we draw a line which makes an angle 
\displaystyle {3\pi }/{2}\;
with the positive 
\displaystyle x
-axis, we get the negative 
\displaystyle y
-axis and we see that this line cuts the unit circle at the point 
\displaystyle \left( 0 \right.,\left. -1 \right). The 
\displaystyle x
-coordinate of the intersection point is thus 
\displaystyle 0
and hence 
\displaystyle \cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0

