Solution 4.2:1e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.2:1e moved to Solution 4.2:1e: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{NAVCONTENT_START}}  | ||
| - | <center> [[Image:4_2_1e.gif]] </center>  | ||
| - | {{NAVCONTENT_STOP}}  | ||
[[Image:4_2_1_e.gif|center]]  | [[Image:4_2_1_e.gif|center]]  | ||
| + | |||
| + | In the triangle, we seek the hypotenuse   | ||
| + | <math>x</math>, knowing the angle 35o and that the adjacent has length 11.  | ||
| + | |||
| + | |||
| + | The definition of sine gives  | ||
| + | |||
| + | |||
| + | <math>\sin 35^{\circ }=\frac{11}{x}</math>  | ||
| + | |||
| + | |||
| + | and thus  | ||
| + | |||
| + | |||
| + | <math>x=\frac{11}{\sin 35^{\circ }}\quad \left( \approx 19.2 \right)</math>  | ||
Revision as of 11:12, 28 September 2008
In the triangle, we seek the hypotenuse \displaystyle x, knowing the angle 35o and that the adjacent has length 11.
The definition of sine gives
\displaystyle \sin 35^{\circ }=\frac{11}{x}
and thus
\displaystyle x=\frac{11}{\sin 35^{\circ }}\quad \left( \approx 19.2 \right)

