Solution 4.1:4b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.1:4b moved to Solution 4.1:4b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | If we use the distance formula  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}</math>  | ||
| + | |||
| + | |||
| + | to determine the distance between the points   | ||
| + | <math>\left( x \right.,\left. y \right)=\left( -2 \right.,\left. 5 \right)</math>  | ||
| + | and   | ||
| + | <math>\left( a \right.,\left. b \right)=\left( 3 \right.,\left. -1 \right)</math>, we get  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & d=\sqrt{\left( -2-3 \right)^{2}+\left( 5-\left( -1 \right) \right)^{2}} \\   | ||
| + | & =\sqrt{\left( -5 \right)^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \\   | ||
| + | \end{align}</math>  | ||
Revision as of 10:01, 27 September 2008
If we use the distance formula
\displaystyle d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}
to determine the distance between the points 
\displaystyle \left( x \right.,\left. y \right)=\left( -2 \right.,\left. 5 \right)
and 
\displaystyle \left( a \right.,\left. b \right)=\left( 3 \right.,\left. -1 \right), we get
\displaystyle \begin{align}
& d=\sqrt{\left( -2-3 \right)^{2}+\left( 5-\left( -1 \right) \right)^{2}} \\ 
& =\sqrt{\left( -5 \right)^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \\ 
\end{align}
