Solution 2.3:1a
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | If we consider the rule |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>(x-a)^{2} = x^{2}-2ax+a^{2}</math>}} |
| + | |||
| + | and move <math>a^{2}</math> over to the left-hand side, we obtain the formula | ||
| + | |||
| + | {{Displayed math||<math>(x-a)^{2}-a^{2} = x^{2}-2ax\,\textrm{.}</math>}} | ||
| + | |||
| + | With the help of this formula, we can rewrite (complete the square of) a mixed expression <math>x^{2}-2ax</math> to a obtain a quadratic expression, <math>(x-a)^{2}-a^{2}</math>. | ||
| + | |||
| + | The expression <math>x^{2}-2x</math> corresponds to <math>a=1</math> in the formula above and thus | ||
| + | |||
| + | {{Displayed math||<math>x^{2}-2x = (x-1)^{2}-1\,\textrm{.}</math>}} | ||
Current revision
If we consider the rule
| \displaystyle (x-a)^{2} = x^{2}-2ax+a^{2} |
and move \displaystyle a^{2} over to the left-hand side, we obtain the formula
| \displaystyle (x-a)^{2}-a^{2} = x^{2}-2ax\,\textrm{.} |
With the help of this formula, we can rewrite (complete the square of) a mixed expression \displaystyle x^{2}-2ax to a obtain a quadratic expression, \displaystyle (x-a)^{2}-a^{2}.
The expression \displaystyle x^{2}-2x corresponds to \displaystyle a=1 in the formula above and thus
| \displaystyle x^{2}-2x = (x-1)^{2}-1\,\textrm{.} |
