Solution 3.3:6b
From Förberedande kurs i matematik 1
m  (Lösning 3.3:6b moved to Solution 3.3:6b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The logarithm   | 
| - | <  | + | <math>\text{lg 46 }</math>  | 
| - | {{  | + | satisfies the relation  | 
| - | [[  | + | |
| + | |||
| + | <math>\text{10}^{\text{lg 46 }}=46</math>  | ||
| + | |||
| + | |||
| + | and taking the natural logarithm of both sides, we obtain  | ||
| + | |||
| + | |||
| + | <math>\ln \text{10}^{\text{lg 46 }}=\ln 46</math>  | ||
| + | |||
| + | |||
| + | If we use the logarithm law,   | ||
| + | <math>\lg a^{b}=b\centerdot \lg a</math>, on the left-hand side, the equality becomes  | ||
| + | |||
| + | |||
| + | <math>\lg 46\centerdot \ln 10=\ln 46</math>  | ||
| + | |||
| + | |||
| + | This shows that  | ||
| + | |||
| + | |||
| + | <math>\lg 46=\frac{\ln 46}{\ln 10}=\frac{3.828641}{2.302585}=1.6627578</math>  | ||
| + | |||
| + | |||
| + | and the answer is   | ||
| + | <math>\text{1}.\text{663}</math>.  | ||
| + | |||
| + | NOTE: In order to calculate the answer on a calculator, you press   | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left[ 4 \right]\quad \left[ 6 \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 1 \right]\quad \left[ 0 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\   | ||
| + | & \quad  \\   | ||
| + | \end{align}</math>  | ||
Revision as of 09:22, 26 September 2008
The logarithm \displaystyle \text{lg 46 } satisfies the relation
\displaystyle \text{10}^{\text{lg 46 }}=46
and taking the natural logarithm of both sides, we obtain
\displaystyle \ln \text{10}^{\text{lg 46 }}=\ln 46
If we use the logarithm law, 
\displaystyle \lg a^{b}=b\centerdot \lg a, on the left-hand side, the equality becomes
\displaystyle \lg 46\centerdot \ln 10=\ln 46
This shows that
\displaystyle \lg 46=\frac{\ln 46}{\ln 10}=\frac{3.828641}{2.302585}=1.6627578
and the answer is 
\displaystyle \text{1}.\text{663}.
NOTE: In order to calculate the answer on a calculator, you press
\displaystyle \begin{align}
& \left[ 4 \right]\quad \left[ 6 \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 1 \right]\quad \left[ 0 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ 
& \quad  \\ 
\end{align}
