Solution 3.3:5e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:5e moved to Solution 3.3:5e: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The argument of ln can be written as  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\frac{1}{e^{2}}=e^{-2}</math>  | ||
| + | |||
| + | |||
| + | and with the logarithm law,   | ||
| + | <math>\lg a^{b}=b\lg a</math>, we obtain  | ||
| + | |||
| + | |||
| + | <math>\ln \frac{1}{e^{2}}=\ln e^{-2}=\left( -2 \right)\centerdot \ln e=\left( -2 \right)\centerdot 1=-2</math>  | ||
Revision as of 08:45, 26 September 2008
The argument of ln can be written as
\displaystyle \frac{1}{e^{2}}=e^{-2}
and with the logarithm law, 
\displaystyle \lg a^{b}=b\lg a, we obtain
\displaystyle \ln \frac{1}{e^{2}}=\ln e^{-2}=\left( -2 \right)\centerdot \ln e=\left( -2 \right)\centerdot 1=-2
