Solution 3.3:5b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:5b moved to Solution 3.3:5b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | By using the logarithm laws,   | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\lg a+\lg b=\lg \left( a\centerdot b \right)</math>  | ||
| + | |||
| + | |||
| + | <math>\text{log }a-\text{ log }b=\text{log}\left( \frac{a}{b} \right)</math>  | ||
| + | |||
| + | we can collect together the terms into one logarithmic expression  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \ln 8-\ln 4-\ln 2=\ln 8-\left( \ln 4+\ln 2 \right)=\ln 8-\ln \left( 4\centerdot 2 \right) \\   | ||
| + | & =\ln \frac{8}{4\centerdot 2}=\ln 1=0, \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | where ln 1 =0, since   | ||
| + | <math>e^{0}=1</math>  | ||
| + | (the equality   | ||
| + | <math>a^{0}=1</math>  | ||
| + | holds for all   | ||
| + | <math>a\ne 0</math>  | ||
| + | ).  | ||
Revision as of 08:26, 26 September 2008
By using the logarithm laws,
\displaystyle \lg a+\lg b=\lg \left( a\centerdot b \right)
\displaystyle \text{log }a-\text{ log }b=\text{log}\left( \frac{a}{b} \right)
we can collect together the terms into one logarithmic expression
\displaystyle \begin{align}
& \ln 8-\ln 4-\ln 2=\ln 8-\left( \ln 4+\ln 2 \right)=\ln 8-\ln \left( 4\centerdot 2 \right) \\ 
& =\ln \frac{8}{4\centerdot 2}=\ln 1=0, \\ 
\end{align}
where ln 1 =0, since 
\displaystyle e^{0}=1
(the equality 
\displaystyle a^{0}=1
holds for all 
\displaystyle a\ne 0
).
