Solution 3.3:3h
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:3h moved to Solution 3.3:3h: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Because   | 
| - | <  | + | <math>a^{2}\sqrt{a}=a^{2}a^{\frac{1}{2}}=a^{2+\frac{1}{2}}=a^{\frac{5}{2}}</math>, the logarithm law,   | 
| - | {{  | + | <math>b\lg a=\lg a^{b}</math>, gives that   | 
| + | |||
| + | |||
| + | <math>\log _{a}a^{2}\sqrt{a}=\log _{a}a^{\frac{5}{2}}=\frac{5}{2}\centerdot \log _{a}a=\frac{5}{2}\centerdot 1=\frac{5}{2},</math>  | ||
| + | |||
| + | |||
| + | where we have used that   | ||
| + | <math>\log _{a}a=1</math>.  | ||
| + | |||
| + | NOTE: In this exercise, we assume, implicitly, that   | ||
| + | <math>\text{a}>0\text{ }</math>  | ||
| + | and   | ||
| + | <math>\text{a}\ne \text{1}</math>.  | ||
Revision as of 14:41, 25 September 2008
Because \displaystyle a^{2}\sqrt{a}=a^{2}a^{\frac{1}{2}}=a^{2+\frac{1}{2}}=a^{\frac{5}{2}}, the logarithm law, \displaystyle b\lg a=\lg a^{b}, gives that
\displaystyle \log _{a}a^{2}\sqrt{a}=\log _{a}a^{\frac{5}{2}}=\frac{5}{2}\centerdot \log _{a}a=\frac{5}{2}\centerdot 1=\frac{5}{2},
where we have used that 
\displaystyle \log _{a}a=1.
NOTE: In this exercise, we assume, implicitly, that \displaystyle \text{a}>0\text{ } and \displaystyle \text{a}\ne \text{1}.
