Solution 2.2:2c
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 2.2:2c moved to Solution 2.2:2c: Robot: moved page) |
m |
||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | We can simplify the left-hand side in the equation by expanding the squares using the squaring rule |
| - | + | ||
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | (x+3)^{2}-(x-5)^{2} | ||
| + | &= (x^{2}+2\cdot 3x+3^{2})-(x^{2}-2\cdot 5x+5^{2})\\[5pt] | ||
| + | &= x^{2}+6x+9-x^{2}+10x-25\\[5pt] | ||
| + | &=16x-16\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | Thus, the equation is | ||
| + | |||
| + | {{Displayed math||<math>16x-16=6x+4\,\textrm{.}</math>}} | ||
| + | |||
| + | Now, move all ''x'''s to the left-hand side (subtract 6''x'' from both sides) and the constants to the right-hand side (add 16 to both sides) | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | 16x-6x&=4+16\,,\\[5pt] | ||
| + | 10x&=20\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | Divide both sides by 10 to get the answer | ||
| + | |||
| + | {{Displayed math||<math>x=\frac{20}{10}=2\,\textrm{.}</math>}} | ||
| + | |||
| + | Finally, we check that <math>x=2</math> satisfies the equation in the exercise | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \text{LHS} &= (2+3)^{2}-(2-5)^{2} = 5^{2}-(-3)^{2} = 25-9 = 16,\\[5pt] | ||
| + | \text{RHS} &= 6\cdot 2+4 = 12+4 = 16\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule
| \displaystyle \begin{align}
(x+3)^{2}-(x-5)^{2} &= (x^{2}+2\cdot 3x+3^{2})-(x^{2}-2\cdot 5x+5^{2})\\[5pt] &= x^{2}+6x+9-x^{2}+10x-25\\[5pt] &=16x-16\,\textrm{.} \end{align} |
Thus, the equation is
| \displaystyle 16x-16=6x+4\,\textrm{.} |
Now, move all x's to the left-hand side (subtract 6x from both sides) and the constants to the right-hand side (add 16 to both sides)
| \displaystyle \begin{align}
16x-6x&=4+16\,,\\[5pt] 10x&=20\,\textrm{.} \end{align} |
Divide both sides by 10 to get the answer
| \displaystyle x=\frac{20}{10}=2\,\textrm{.} |
Finally, we check that \displaystyle x=2 satisfies the equation in the exercise
| \displaystyle \begin{align}
\text{LHS} &= (2+3)^{2}-(2-5)^{2} = 5^{2}-(-3)^{2} = 25-9 = 16,\\[5pt] \text{RHS} &= 6\cdot 2+4 = 12+4 = 16\,\textrm{.} \end{align} |
